Application of Support Vector Machines for Recognition of Handwritten Arabic/Persian Digits
محل انتشار: دومین کنفرانس ماشین بینایی و پردازش تصویر
سال انتشار: 1381
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,728
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP02_045
تاریخ نمایه سازی: 20 مهر 1390
چکیده مقاله:
A new method for recognition of isolated handwritten Arabic/Persian digits is presented. This method is based on Support Vector Machines (SVMs), and a new approach of feature extraction. Each digit is considered from four different views, and from each view 16 features are extracted and combined to obtain 64 features. Using these features, multiple SVM classifiers are trained to separate different classes of digits. CENPARMI Indian (Arabic/Persian) handwritten digit database is used for training and testing of SVM classifiers. Based on this database, differences between Arabic and Persian digits in digit recognition are shown. This database provides 7390 samples for training and 3035 samples for testing from the real life samples. Experiments show that the proposed features can provide a very good recognition result using Support Vector Machines at a recognition rate 94.14%, compared with 91.25% obtained by MLP neural network classifier using the same features and test set.
کلیدواژه ها:
Optical Character Recognition (OCR) ، Feature Extraction ، Machine Learning ، Support Vector Machine (SVM) ، Multiple Support Vector Classifiers ، MLP Neural Network
نویسندگان
Javad Sadri
Centre for Pattern Recognition and Machine Intelligence (CENPARMI)Department of Computer Science, Concordia University Suite GM ۶۰۶, ۱۴۵۵ de Maisonneuve Blvd. West,Montreal, Quebec, Canada H۳G ۱M۸
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :