خلاصه سازی چند سندی اخبار بر خط مبتنی بر توابع زیرپیمانه با قابلیت یادگیری
محل انتشار: ششمین کنفرانس بین المللی وب پژوهی
سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 701
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRANWEB06_018
تاریخ نمایه سازی: 16 مرداد 1399
چکیده مقاله:
با افزایش انتشار بر خط اطلاعات و گسترش کاربران اینترنت، نیاز به خلاصه سازی خودکار متن ضرورت بیشتری یافته است. در این مقاله، یک روش خلاصه سازی چند سندی مبتنی بر توابع زیرپیمانه قابل یادگیری ارایه می شود. با استفاده از زیرپیمانگی، امکان تضمین کیفیت راه حل وجود دارد. در روش ارایه شده ، سندهای متنی ورودی با استفاده از گراف های وزن دار مدل سازی می شوند که راس ها، بازنمایی کننده ی جملات و یال ها نشان دهنده ی شباهت بین جملات است. با استفاده از تین گراف، ویژگی هایی که نشان دهنده ی اهمیت و تاثیر هر جمله است، استخراج می شوند. ویژگی های اهمیت، ارزش هر جمله را مستقل از جملات دیگر در نظر می گیرند. برای مدل سازی این ویژگی ها، از توابع پیمانه ای استفاده می شود. ویژگی های تاثیر، ارزش هر جمله را با توجه به ارتباط آن با جملات دیگر در نظر می گیرند. برای مدل سازی این ویژگی ها از توابع زیرپیمانه ای استفاده می گردد. این ویژگی ها اجزای سازنده ی تابع هدف را تشکیل می دهند که معادل با یک شبکه ی عصبی متعارف است. از همین رو، از یک مجموعه ی آموزشی جهت آموزش شبکه استفاده می شود. پس از اجزای فرایند یادگیری، از این تابع به منظور خلاصه سازی استخراجی چند سندی استفاده می شود. این خلاصه ساز با استفاده از پیکره ی پاسخ و DUC 2004 آزمایش شده، و نتایج حاصل از آن ارایه گردیده است.
کلیدواژه ها:
نویسندگان
علیرضا قدیمی
پژوهشکده فناوری اطلاعات و ارتباطات جهاد دانشگاهی، تهران، ایران
حمید بیگی
دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف، تهران، ایران