بهبود عملکرد سیستم بازشناسی چهره مقاوم به حالت های مختلف چهره با استفاده ازیادگیری عمیق
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 687
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRANOPEN09_006
تاریخ نمایه سازی: 27 آذر 1398
چکیده مقاله:
یکی از چالش های پیش روی بازشناسی چهره سه بعدی، مقاوم بودن در برابر حالت های مختلف چهره می باشد. در این مقاله، هدف طراحی سیستمی است که تصاویر حالت های مختلف چهره را دریافت و نسبت به آن، بازشناسی چهره را با دقت بالایی انجام دهد. برای ارزیابی الگوریتم پیشنهادی از تصاویر دو بعدی بافت و سه بعدی عمق چهره که در پایگاه داده Bosphorus به صورت مجزا قابل استخراج است، استفاده شده است. ابتدا ناحیه های اصلی چهره از تصاویر اولیه کل چهره جدا می شود. از هر تصویر بافت و عمق با روش الگوی دودویی محلی می توان تصاویر جدید دیگری ایجاد کرد. در مجموع برای ورودی شبکه عصبی کانولوشن و آموزش شبکه، چهار تصویر بافت و عمق و دو تصویر دیگر که با روش الگوی دودویی محلی ایجاد می شود را در نظر می گیریم. شبکه عصبی کانولوشن پیشنهادی عمل استخراج ویژگی و انتخاب ویژگی و طبقه بندی را انجام می دهد. دقتی که توسط الگوریتم پیشنهادی بدست می آید، 97٫22٪است که علاوه بر مقاوم بودن به حالت های مختلف چهره، نتیجه مطلوبی برای مدیریت تغییرات حالات چهره بر روی پایگاه داده تصاویر سه بعدی چهره را نشان می دهد که نسبت به کارهای اخیر با دقت بالاتری انجام شده است.
کلیدواژه ها:
نویسندگان
فاطمه سادات قیاسی
دانشجوی کارشناسی ارشد هوش مصنوعی، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده مهندسی کامپیوتر و فناوری اطلاعات، قزوین، ایران
کریم فائز
استاد، دانشگاه صنعتی امیرکبیر، دانشکده مهندسی برق، تهران، ایران