ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

A Hybrid Approach to Enhance Pure Collaborative Filtering based on Content Feature Relationship

سال انتشار: 1398
کد COI مقاله: ICIKT10_058
زبان مقاله: انگلیسیمشاهد این مقاله: 180
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

خرید و دانلود فایل مقاله

متن کامل (فول تکست) این مقاله منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد.

مشخصات نویسندگان مقاله A Hybrid Approach to Enhance Pure Collaborative Filtering based on Content Feature Relationship

Mohammad Maghsoudi Mehrabani - School of Engineering Science College of Engineering Iran
Hamid Mohayeji - Department of Computer Engineering Sharif University of Technology Tehran, Iran
Ali Moeini - School of Engineering Science College of Engineering University of Tehran Tehran, Tehran, Iran

چکیده مقاله:

Recommendation systems get expanding significance because of their applications in both the scholarly community and industry. With the development of additional data sources and methods of extracting new information other than the rating history of clients on items, hybrid recommendation algorithms, in which some methods have usually been combined to improve performance, have become pervasive. In this work, we first introduce a novel method to extract the implicit relationship between content features using a sort of well-known methods from the natural language processing domain, namely Word2Vec. In contrast to the typical use of Word2Vec, we utilize some features of items as words of sentences to produce neural feature embeddings, through which we can calculate the similarity between features. Next, we propose a novel content-based recommendation system that employs the relationship to determine vector representations for items by which the similarity between items can be computed (RELFsim). Our evaluation results demonstrate that it can predict the preference a user would have for a set of items as good as pure collaborative filtering. This content-based algorithm is also embedded in a pure item-based collaborative filtering algorithm to deal with the cold-start problem and enhance its accuracy. Our experiments on a benchmark movie dataset corroborate that the proposed approach improves the accuracy of the system

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/982293/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Maghsoudi Mehrabani, Mohammad and Mohayeji, Hamid and Moeini, Ali,1398,A Hybrid Approach to Enhance Pure Collaborative Filtering based on Content Feature Relationship,دهمین کنفرانس فناوری اطلاعات و دانشIKT2019,تهران,,,https://civilica.com/doc/982293

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398, Maghsoudi Mehrabani, Mohammad؛ Hamid Mohayeji and Ali Moeini)
برای بار دوم به بعد: (1398, Maghsoudi Mehrabani؛ Mohayeji and Moeini)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی