Application of the Fuzzy Logic for Determining Strategic Metals in Iran
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,731
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSST01_047
تاریخ نمایه سازی: 12 تیر 1389
چکیده مقاله:
In the last three decades in Iran, a number of different metallurgical plants in various sizes is proposed by private and public sectors to produce specific metals such as Fe, Mn, Al, Cu, Au, Mo, Zn, and Pb. The decision to select some of the above-mentioned metals in Iran is not based on correct data and logical methods. As a result of these limitations, some of these plans are not sophisticated. The modeling strategy based on the application of the fuzzy logic is introduced to provide a powerful and efficient method for the estimation and forecasting. The procedure is particularly suitable for the estimation of ill-defined systems in which there is considerable uncertainty about the nature and range of key input variables. This theory defines a membership function varying between 0 and 1. This paper is to rank a strategic degree of all produced metals (eg., Fe, Mn, Al, Cu, Au, Cr, Zn, and Pb) in Iran by the fuzzy logic theory. This method is a general key to solve a number of problems such as selecting appropriate metal production, developing the existing metal plants, and ranking the produced strategic metals and the like. Based on the fuzzy logic theory, available data can develop the installed plants or can produce a new metal, material, and so on. By the use of this fuzzy logic theory, the realistic and best solution is achieved in which it is applicable to most Iranian industries.
کلیدواژه ها:
نویسندگان
A. Amlah
Group of Metallurgy and Material, Graduate School, Tehran South Unit, Islamic Azad University,
N. Towhidi
Department of Material and Metallurgy Engineering, Faculty of Engineering, University of Tehran
R. Tavakkoli-Moghaddam
Department of Industrial Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :