تخمین میزان آلاینده های هوای ناشی از نشست و برخاست هواپیماها در فرودگاه بین المللی مهرآباد به کمک الگوریتم یادگیری CGF مبتنی بر شبکه های عصبی مصنوعی
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 629
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EMECCONF03_062
تاریخ نمایه سازی: 7 مهر 1398
چکیده مقاله:
طی سالهای اخیر تهران نه تنها به عنوان اصلی ترین، بزرگترین و مهمترین شهر ایران مطرح بوده است که از لحاظ سیاحتی و گردشگری و نیز در برخی مواقع از سال به عنوان مرکز نمایشگاه های ملی و بین المللی جایگاه ویژهای را به خود اختصاص داده است. بدیهی است که شرایط ویژه این شهر تاثیر مستقیم بر عملکرد و ترافیک هوایی فرودگاه مهرآباد دارد. این فرودگاه به لحاظ تعداد پروازهای داخلی در جایگاه اول کشور قرار گرفته و بررسیها نشان دهنده روند فزاینده ترافیک هوایی در این فرودگاه میباشد. در این راستا شناسایی دقیق منابع آلاینده هوا اهمیت بسزایی در کنترل آلودگی این کلان شهر در پی دارد که در این میان شناسایی و تعیین میزان آلاینده های ناشی از عملیات نشست و برخاست هواپیماها نقش بسزایی از کل سهم آلودگی هوا را به خود اختصاص میدهد. این تحقیق به تخمین میزان آلاینده های هوای ناشی از نشست و برخاست هواپیماها در فرودگاه بین المللی مهرآباد به کمک الگوریتم یادگیری انتشار برگشتی گرادیان مزدوج با به روز رسانی های فلیچر – ریوز (CGF) مبتنی بر شبکه های عصبی مصنوعی میپردازد. لذا برای ایجاد این شبکه با ساختار پیشخور و الگوریتم پس انتشار خطا، مدل شبکه عصبی پرسپترون با 4 نرون در لایه ورودی و تعداد نرونهای متفاوت در لایه های مخفی هر یک از آلاینده های مورد بررسی شامل CO، O3، NO2، SO2 و PM10 طی سالهای 1389 تا 1397 با الگوریتم یادگیری CGF تخمین زده شدند. بررسی نتایج حاصل از شبکه عصبی مصنوعی طراحی شده نشان میدهد آلاینده PM10 نتایج به مراتب بهتری را از خود بر جای گذاشته است. به نحوی که کمترین میزان کمینه میانگین خطای مربعات را به مقدار 1,2695 و با کارآیی 0,08195 بدست آورد.
کلیدواژه ها:
نویسندگان
داوود دانش پژوه
کارشناس ارشد مهندسی کامپیوتر با گرایش هوش مصنوعی و رباتیکز