Stock Prediction Using Hidden Markov Model: A Case-Study of Iran s Stock Market Reacting to Political Events

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 437

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

COMCONF06_040

تاریخ نمایه سازی: 24 شهریور 1398

چکیده مقاله:

Stock market prediction is one of the most important challenges that data analysts face in the finance sector. Therefore, a plethora of research projects have been carried out to facilitate forecasting the future of stock market prices. Recently, Hidden Markov Model (HMM) has been successfully utilized for this purpose. In this paper, we elaborate on combining HMM and Term Frequency-Inverse Document Frequency (TF-IDF) term weights using online political news to predict next day’s stock prices for a few selected companies in Iranian stock market. The HMM we use is based on Maximum a Posteriori (MAP) estimation instead of common Maximum Likelihood Estimation (MLE) approach. Ourresults show that some surprisingly huge changes in stock prices could well be forecasted by our model. We compare the results of this study to other well-known machine learning algorithm, Artificial Neural Network (ANN), by using Mean Absolute Percentage Error (MAPE).

نویسندگان

Nasrin Shabani

Tamadon Investment Bank, Tehran, Iran

Ahmad Kuchaki

Tamadon Investment Bank, Tehran, Iran