ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

تشخیص خستگی ذهنی با طبقه بندی الگوهای ارتباطات عملکردی استخراج شده ازسیگنال EEG با استفاده از الگوریتم های یادگیری عمیق

سال انتشار: 1396
کد COI مقاله: ICBME24_004
زبان مقاله: فارسیمشاهد این مقاله: 151
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله تشخیص خستگی ذهنی با طبقه بندی الگوهای ارتباطات عملکردی استخراج شده ازسیگنال EEG با استفاده از الگوریتم های یادگیری عمیق

جواد سلیمانی - دانشجوی کارشناسی ارشد مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس
فواد قادری - آزمایشگاه تعامل انسان و کامپیوتر، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس

چکیده مقاله:

تشخیص به موقع خستگی ذهنی در کارها و فعالیتهایی که از حساسیت زیادی برخوردار هستند و نیاز به هوشیاری کامل دارند دارای اهمیت فوق العاده ای می باشد. در این تحقیق، با هدف ارائه مدلی برای تشخیص به موقع خستگی ذهنی، الگوهای ارتباطات عملکردی مغزیدر حالتهای هوشیاری و خستگی مورد استفاده قرار گرفته اند. برای تشخیص خستگی ذهنی الگوهای ارتباطی را با روش MSC به دست آوردیم و به عنوان ویژگی وارد طبقه بند کردیم. همچنین با استفاده از معیار کندال تائو قدرت تفکیک ویژگیها را اندازه گیری کردیم و ویژگی هایی که قدرت تفکیک بالاتری داشتند به عنوان ویژگیهای افتراقی برای طبقه بندی مورد استفاده قرار گرفت. برای طبقه بندی از طبقهبند SVM غیر خطی با تابع پایه ی شعاعی و نیز از شبکه عصبی عمیق AlexNet استفاده شد. ارزیابی مدل با استفاده از مجموعه داده EEG واقعی و روی مجموعه کامل ویژگیها و مجموعه ویژگیهای افتراقی در دو حالت بین شخصی و درون شخصی انجام شده است. بالاترین دقت، در حالت ارزیابی بین شخصی (%73.33) و در حالت ارزیابی درون شخصی((%98.87 برای مجموعه ویژگی های افتراقی و با استفاده از شبکه AlexNet بهدست آمد.

کلیدواژه ها:

خستگی ذهنی، ارتباطات مغزی، الگوریتمهای یادگیری عمیق، اندازه مربع همدوسی (MSC)، ویژگیهای افتراقی

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/922065/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
سلیمانی، جواد و قادری، فواد،1396،تشخیص خستگی ذهنی با طبقه بندی الگوهای ارتباطات عملکردی استخراج شده ازسیگنال EEG با استفاده از الگوریتم های یادگیری عمیق،بیست و چهارمین کنفرانس ملی و دومین کنفرانس بین المللی مهندسی‌ زیست پزشکی ایران،تهران،،،https://civilica.com/doc/922065

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1396، سلیمانی، جواد؛ فواد قادری)
برای بار دوم به بعد: (1396، سلیمانی؛ قادری)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 28,241
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی