Stability and numerical approximation for Sivashinsky equation by eigenfunction expansion

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 584

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICNS04_024

تاریخ نمایه سازی: 8 تیر 1398

چکیده مقاله:

This paper aims to investigate the stability and numerical approximation of Sivashinsky equations. We can extend a stability theorem on the higher order elliptic equation such as biharmonic equation by the eigenfunction expansion. Because RBFs do not generally vanish on the boundary, they can not directly approximate a Dirichlet boundary problem by Galerkin method. An auxiliary parametrized technique is used to convert a Dirichlet boundary condition to a Robin one. We apply the Galerkin meshfreemethod based on radial basis functions to discrete the spatial variables and use a group presenting scheme for the time discretization. Some experimental results will be presented to show the performance of the proposed method.

نویسندگان

Mehdi Mesrizadeh

Department of Mathematics, Imam Khomeini International University, Qazvin, IRAN.

Kamal Shanazari

Department of Mathematics, University of Kurdistan, Sanandaj, IRAN.