Stability and numerical approximation for Sivashinsky equation by eigenfunction expansion
محل انتشار: چهارمین کنفرانس بین المللی ریاضی و علوم کامپیوتر
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 584
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICNS04_024
تاریخ نمایه سازی: 8 تیر 1398
چکیده مقاله:
This paper aims to investigate the stability and numerical approximation of Sivashinsky equations. We can extend a stability theorem on the higher order elliptic equation such as biharmonic equation by the eigenfunction expansion. Because RBFs do not generally vanish on the boundary, they can not directly approximate a Dirichlet boundary problem by Galerkin method. An auxiliary parametrized technique is used to convert a Dirichlet boundary condition to a Robin one. We apply the Galerkin meshfreemethod based on radial basis functions to discrete the spatial variables and use a group presenting scheme for the time discretization. Some experimental results will be presented to show the performance of the proposed method.
کلیدواژه ها:
نویسندگان
Mehdi Mesrizadeh
Department of Mathematics, Imam Khomeini International University, Qazvin, IRAN.
Kamal Shanazari
Department of Mathematics, University of Kurdistan, Sanandaj, IRAN.