Using Synthetic Data and Dimensionality Reduction in High-Dimensional Classi cation via Logistic Regression

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 545

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICNS04_004

تاریخ نمایه سازی: 8 تیر 1398

چکیده مقاله:

Traditional logistic regression is plugged with degenerates and violent behavior in high-dimensional classi cation, because of the problem of non-invertible matrices in estimating model parameters. In this paper, to overcome the high-dimensionality of data, we introduce two new algorithms. First, we improve the e ciency of nite population Bayesian bootstrapping logistic regression classi er by the rule of majority vote. Second, using simple random sampling without replacement and selecting a smaller numberof covariates rather than the sample size and applying traditional logistic regression, we introduce the other new algorithm for high-dimensional binary classi cation. We compare the proposed algorithms with the regularized logistic regression models using simulated data.

کلیدواژه ها:

High-dimensional classi cation ، Logistic regression classi er ، Dimensionality reduction ، Fi-nite population Bayesian bootstrapping.

نویسندگان

Shaho Zarei

Department of Statistics, Faculty of Basic Science, university of Kurdistan, Sanandaj, Iran.

Adel Mohammadpour

Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic),Tehran, Iran.