River flow forecasting using intelligent models
محل انتشار: هفدهمین کنفرانس هیدرولیک ایران
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 538
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IHC17_124
تاریخ نمایه سازی: 1 دی 1397
چکیده مقاله:
River flow forecasting is an important task for water resources management and planning. In this study, three intelligent models namely, artificial neural network (ANN), adaptive neuro -fuzzy inference system (ANFIS), and gene expression programming (GEP) models are applied for river flow forecasting of the Ghare-Soo River located at the Ardabil province using daily lagged discharge data in the period of 2005-2013 collected from the Doostbigloo hydrometric station. Four performance criteria namely, correlation coefficient, root mean square error, Nash-Sutcliff coefficient and bias were used to evaluate and compare results of the models. The results obtained showed that the performances of all the models are satisfactory. However, the gene expression programming model was identified as the most suitable model for flow forecasting of the Ghare-soo River.
کلیدواژه ها:
Adaptive neuro-fuzzy inference system ، Artificial neural networks ، Discharge forecasting ، Gene expression programming
نویسندگان
Mahsa Hasanpour Kashani
Department of Water Engineering, University of Mohaghegh Ardabili, Ardabil, Iran