A Python-based Data mining to Address Class Imbalance Problem
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 623
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
COMCONF03_093
تاریخ نمایه سازی: 6 اردیبهشت 1396
چکیده مقاله:
Orange canvas is an open source data mining tool that is based on Python scripting, visual programming and scientific computing. We developed analytical frameworks, which have advanced theoretical studies of practical learning methods, to address the class imbalance problem. In a two-class classification task, when the number of one class (majority) is greater than another (minority), this class is called imbalanced. The classification of this imbalanced class causes imbalanced distribution, poor predictive classification accuracy and a Class Imbalance Problem (CIP). We will focus on clarifying and writing a simple or clear Python script and visualize the frameworks of existing learning methods that address the CIP with well-known Synthetic over-sampling technique (SMOTE) based ensemble methods. The introduced orange workflows, Python scripting, and experimental results, will assist researchers and students to address the CIP simply. This study’s aim is to design innovative methods to address CIP.
کلیدواژه ها:
نویسندگان
Seyyedali Fattahi
Data Mining and Optimization Research Group, Centre for Artificial Intelligence, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
Zalinda Othman
Data Mining and Optimization Research Group, Centre for Artificial Intelligence, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :