ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Tracking Performance of Semi-Supervised Large MarginClassifiers in Automatic Modulation Classification

سال انتشار: 1393
کد COI مقاله: JR_JIST-2-8_005
زبان مقاله: انگلیسیمشاهده این مقاله: 258
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 7 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Tracking Performance of Semi-Supervised Large MarginClassifiers in Automatic Modulation Classification

Hamidreza Hosseinzadeh - Department of Electrical and Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Farbod Razzazi - Department of Electrical and Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Afrooz Haghbin - Department of Electrical and Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

چکیده مقاله:

Automatic modulation classification (AMC) in detected signals is an intermediate step between signal detection and demodulation, and is also an essential task for an intelligent receiver in various civil and military applications. In this paper, we propose a semi-supervised Large margin AMC and evaluate it on tracking the received signal to noise ratio (SNR) changes to classify most popular single carrier modulations in non-stationary environments. To achieve this objective, two structures for self-training of large margin classifiers were developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A suitable combination of the higher order statistics (HOS) and instantaneous characteristics of digital modulation are selected as effective features. We investigated the robustness of the proposed classifiers with respect to different SNRs of the received signals via simulation results and we have shown that adding unlabeled input samples to the training set, improve the tracking capacity of the presented system to robust against environmental SNR changes. The performance of the automatic modulation classifier is presented in the form of k-fold cross-validation test, classification accuracy and confusion matrix methods. Simulation results show that the proposed approach is capable to classify the modulation class in unknown variable noise environment at even low SNRs.

کلیدواژه ها:

Automatic Modulation Classification; AMC; Tracking Performance Evaluation; Passive-Aggressive Classifier; Self Training; Semi-Supervised Learning

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا JR_JIST-2-8_005 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/571089/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Hosseinzadeh, Hamidreza and Razzazi, Farbod and Haghbin, Afrooz,1393,Tracking Performance of Semi-Supervised Large MarginClassifiers in Automatic Modulation Classification,,,,,https://civilica.com/doc/571089

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1393, Hosseinzadeh, Hamidreza؛ Farbod Razzazi and Afrooz Haghbin)
برای بار دوم به بعد: (1393, Hosseinzadeh؛ Razzazi and Haghbin)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه آزاد
تعداد مقالات: 30,819
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی