COMPARING SPECTRAL AND OBJECT BASED HYPERSPECTRAL IMAGE ANALYSIS FOR PALM COVER MAPPING USING EO-1/HYPERION IMAGERY
محل انتشار: همایش ژئوماتیک 85
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 3,925
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
GEO85_11
تاریخ نمایه سازی: 24 دی 1384
چکیده مقاله:
Hyperspectral imaging can be defined as acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum (Goetz, 1992) . Accurate estimation of biophysical and biochemical characteristics of vegetation for agricultural and forestry purposes is one of the main inherent abilities of hypersepectral images. The main focus of this study is to evaluate EO-1.Hyperion abilities foe plan conver mapping over the city of Bam in southeast of Iran. In these respect two main classification techniques included Spectral Angle Mapper (SAM) and Object-Oriented Classification (OOC) have been used. The results show that these classification methods demonstract hight ability of using EO-1-Hyperion satellite data for mapping Plam trees. Both the SAM and Object Based approaches have a good potential to use the rich spectral properties of Hyperion imagery. The object based method was especially effective in identifying smaller objects and accuracy assessment results show the Object Based classification give an Overall Accuracy and Kappa coefficient . 87.93% , 96.6% , respectively
کلیدواژه ها:
نویسندگان
Hamid Reza Bakhtyari
Georg-August University, Inst. Of Forest Assessment and Remote Sensing Geottingen, Germany
Ali Darvishi Boloorani
Georg-August University, Dep. Of Cartography, GIS&Remote Sensing, Geoettingen, Germany
Mozhgan Abasi
Tehtan University, Natural Resources Faculty Karaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :