A hybrid method based on neural networks and a meta-heuristic bat algorithm for stock price prediction

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 663

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

KBEI02_031

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

Recent developments in the stock market have created an urgent need for efficient methods to help stockholders take appropriate decisions about their stocks. Since large fluctuations occur in the stock market over time and there are many parameters which influence this, it seems difficult to make good decisions that are also well-timed. The purpose of this study is to apply artificial neural networks (ANNs), which can deal with time series data and nonlinear parameters, to predict the next day’s stock price. This research has trained the proposed ANN with a meta-heuristic bat algorithm which has a fast and powerful convergence. The recommended method has been applied to stock price forecasting for the first time. This work has used a seven-year dataset of a private bank stocks in order to prove the performance of the suggested method. After data pre-processing, three types of ANNs (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) were employed to predict the stocks’ closing price. Afterwards, MATLAB was used to evaluate the performance of these three methods by scoring the target of the mean absolute percentage error (MAPE). This paper indicates that the bat algorithm adjusts the weight matrix of ANN more precisely than the two other algorithms. The results may be adapted to other companies’ stocks

کلیدواژه ها:

نویسندگان

Marjan Golmaryami

Department of Computer Engineering and Information Technology, Shiraz University of Technology Shiraz, Iran

Marziyeh Behzadi

Department of Computer Engineering and Information Technology, Shiraz University of Technology Shiraz, Iran

Marziyeh Ahmadzadeh

Department of Computer Engineering and Information Technology, Shiraz University of Technology Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • _ _ _ _ _ Short Term Load Forecasting. Expert ...
  • _ _ _ _ International Joural of Innovative Computing, Information ...
  • K. Khan, A. Sahai. A Comparison of BA, GA, PSO, ...
  • G. Iuhasz, M. Tirea, V. Negru. Neural Network Predictions of ...
  • K. Socha, Ch. Blum. An ant colony optimization algorithm for ...
  • H. Shah, R. Ghazali, N. M. Nawi. Using Artificial Bee ...
  • M.. Nawi, A. Khan, M. Z. Rehman. A New B ...
  • A. Kavousi-Fard. A new fuzzy-based feature selection and hybrid TLA- ...
  • H. J. Kim, K. S. Shin. A hybrid approach based ...
  • S. A._Campbell. Handbook of Brain Connectivity. (1st ed.). Berlin: Springer, ...
  • _ _ i _ _ _ _ integrated moving average ...
  • Copyright Notice is: 9 78-1 -4673-6506-2/ _ 00 C2015 IEEE ...
  • نمایش کامل مراجع