Organizational Assessment for Development of SDI for Disaster Management (Case Study Yazd Province, Iran)

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 544

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICINH01_097

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

One of the priorities for organizations related to disaster management is the facilitation and Improvement in decision-making on coping with natural disasters. This requires real-time (up-to-date) and accurate spatial data. The main goal of this study is to describe the conduction of organizational assessment of disaster management in the community of Yazd, as seen from technical and non-technical viewpoint, which is the primary requirement for the development of spatial data infrastructure (SDI) for disaster management. The assessment has been made with respect to spatial data and sharing environment, leading towards an organizational behavior model which takes into account the social and technical characteristics of disaster management in the community. Regarding data which are spatial in nature, the current status with respect to access, including availability, accessibility, applicability and usability were evaluated. The results of organizational assessment showed that disaster management in the community of Yazd does not have a clear policy for partnership in data production and sharing, which is a matter of social, technical, technological, political, institutional and economic challenge. These challenges were the principal obstacle in the development of SDI, described in this study, for disaster management in Yazd.

نویسندگان

Mohammad almasi nia

Lecturer, Department of Geography, Payame Noor University, PO BOX 59391-3998 Tehran, IRAN

YUSEF moradi

Graduate Student, School of Civil Engineering, Universiti Sains Malaysia,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :