Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification
محل انتشار: هشتمین کنفرانس بین المللی فناوری اطلاعات ودانش
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 809
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIKT08_036
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
Classifying electroencephalogram (EEG) signal inBrain Computer Interface (BCI) is a useful methods to analysisdifferent organs of human body and it can be used for communicatewith the outside world and controlling external device.Accuracy classification of extracted features from EEG signals isa problem which many researcher try to improve it. Althoughmany methods for extracting feature and classifying EEG signalhave been proposed and developed, many of them suffer fromextracting less accurate data from EEG signals. In this work,four signal feature extraction and three ensemble learning methodhave been reviewed and performances of classification techniquesare compared for motor imagery task.
کلیدواژه ها:
نویسندگان
Mostafa Mohammadpour
Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
MohammadKazem Ghorbanian
Department of Computer Engineering, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
Saeed Mozaffari
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran