Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 809

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICIKT08_036

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

Classifying electroencephalogram (EEG) signal inBrain Computer Interface (BCI) is a useful methods to analysisdifferent organs of human body and it can be used for communicatewith the outside world and controlling external device.Accuracy classification of extracted features from EEG signals isa problem which many researcher try to improve it. Althoughmany methods for extracting feature and classifying EEG signalhave been proposed and developed, many of them suffer fromextracting less accurate data from EEG signals. In this work,four signal feature extraction and three ensemble learning methodhave been reviewed and performances of classification techniquesare compared for motor imagery task.

نویسندگان

Mostafa Mohammadpour

Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

MohammadKazem Ghorbanian

Department of Computer Engineering, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran

Saeed Mozaffari

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran