Electrodeposition of functionalized multiwalled carbon nanotubes and graphene oxide onto TiO2 nanotubes for supercapacitor applications

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 318

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELECTROCHEMISTRY011_279

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

The hybrid of graphene oxide (GO) and multiwalled carbon nanotubes (MWCNT) used as supercapacitor have recently attracted tremendous interest because of their unique thermal,mechanical, and electrical properties [1]. According to the previous literatures, the fabrication of GO/RGO-CNT hybrid for supercapacitor applications can be performed via the physical combing of CNTs, GO/RGO and a polymer binder in a solvent and then coating of the resulting compositeon a suitable substrate [2, 3]. Based on this procedure not only the thickness and amount of the hybrid film deposited on substrate can not be better controlled but also the film does not havegood mechanical properties and results the decrease of specific capacitance, cycle life andconductivity of the electrode might be expected. In the present work a new strategy to produce GO-MWCNT hybrid without any polymer binder for supercapacitor applications has beenpresented. The hybrid was prepared by simple co-electrochemical reduction of functionalizedmultiwalled carbon nanotubes (fMWCNTs) and GO onto the previously formed TiO2 nanotubes fabricated by anodizing of titanium.Fig. 1a shows the SEM image of bare TiO2NTs/Ti electrode where distinct and well resolved nanotubes are visible. Fig. 1b demonstrates the successful formation of the 3D network structureof the fMWCNT-GO hybrid where RGO sheets and RfMWCNT particles deposited on the TiO2 nanotubes are visible. Fig. 2 presents the galvanostatic charge–discharge curves of the electrodes examined in 1.0 M H2SO4 electrolyte at a constant current of 12 A g-1. Using Equations (1), thespecific capacitance of 600 F g−1 is obtained at a current density of 12.0A g−1 in 1.0 M H2SO4electrolyte for R(fMWCNT-GO)/TiO2NTs/Ti electrode, compared to 490 F g−1 and 400 F g−1 for RfMWCNT/TiO2NTs/Ti and RGO/TiO2NTs/Ti electrodes respectively.

نویسندگان

Masoud Faraji

Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, Urmia University,Urmia, Iran