Optimal Design of PID Controller with Neural-Fuzzy Algorithm for Hydraulic Servo Cylinder
محل انتشار: چهارمین کنفرانس بین المللی علوم و مهندسی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 519
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICESCON04_002
تاریخ نمایه سازی: 25 آذر 1395
چکیده مقاله:
Usage of Artificial Intelligence as self-tuning system can improve a lot of fields like electronic and mechanic systems. We combine Fuzzy logic and Neural Network controller which named ANFIS in hydraulic servo system to optimize the result of classic system efficiency.PID controller as the electronic system for controlling the nonlinear model combined with ANFIS as neural fuzzy controller to determine and adjust their parameters (KP, KI and KD) which ultimately results better that have been used in paper.A Servo Hydraulic Cylinder system is adopted and expanded the mathematical model of this system to get answers then the neural fuzzy PID controller is simulated in MATLAB and is used to control the pressure and position parameters of a hydraulic cylinder. The simulation results show that, New design system could effectively improve the dynamic characteristic with the classic PID control system in the indexes of rapidity, stability and accuracy and more suitable for direct hydraulic servo system.This project plays an important role in all industries, such as controlling the angle departure of tunneling machines in road construction, controlling vehicle steering angle, controlling robot arms, etc. Due to widespread usage of hydraulic systems in different industries, it is necessary to be able to move a hydraulic cylinder step by step, which has not been implemented by this algorithm so far.
کلیدواژه ها:
نویسندگان
Shahrooz Vakili
Islamic Azad university, Kurdistan science and research unit, faculty of technology – engineering
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :