Comparison between field and spectral estimation of wheat yield
محل انتشار: کنفرانس بین المللی پژوهش در علوم و مهندسی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 500
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICRSIE01_002
تاریخ نمایه سازی: 25 آذر 1395
چکیده مقاله:
Yield forecasting, has been used in many parts of the world to assess national food security and provide early food shortage warning. Early assessment of yield can help in strategic planning and decision-making. It is especially useful in countries where the economy depends on crop harvest. In Iran, it is important for determining import–export policies, government aid for farmers, and allocation of subsidies for regional agricultural programs. That there is a relationship or correlation between vegetation indices and estimation crop and we can estimate the amount of yield production by establishing this kind of correlation. There is a satisfactory match sLAI (from SAVI) and gLAI. The overall RMSE was reported to be 0.06 and 0.08 respectively. When sLAI was used instead of gLAI, mean simulation (absolute) error in terms of grain yield was increased to 0.01 Mgha-1. The results of the measurements and calculations showed that the estimation accuracy of product model is acceptable and can be used for estimating wheat dry-land in the study area. The rate of RMSE model under estimation was equal to 0.15 Mg ha-1 (n=120), and 0.19 (n=30), in addition to MSD of 0.02 Mg ha-1 (n=120) and that of 0.03 (n=30), which indicates good accuracy for farming year in the study area and indicates that model with both variables of sLAI & gLAI are accurate enough to estimate products
کلیدواژه ها:
نویسندگان
Farhad Zand
Department of Social Science, Payame Noor University, I.R. Iran:
H. R. Matinfar
Lorestan University, Khoramabad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :