A Novel Computational Approach to Predict Colorectal Cancer-Specific MiRNA Target Interactions
- سال انتشار: 1394
- محل انتشار: اولین سمپوزیوم بین المللی سرطان نسترن
- کد COI اختصاصی: NASTARANCANSER01_019
- زبان مقاله: انگلیسی
- تعداد مشاهده: 870
نویسندگان
Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany
Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany
چکیده
The expression of microRNAs (miRNAs) has been changed in most cancers, includingcolorectal cancer (CRC), therefore finding miRNA functions are important for cancermanagement. Emerging evidences have shown that miRNAs have tissue specific functions.Several computational approaches have been developed to predict miRNA targets; however,all of these methods assume a general pattern underlying these interactions and therefore asignificant number of false predictions have also been presented. Current research wasaimed to unravel the most specific features to identify miRNA target interactions in CRC.We developed a novel approach to predict CRC specific miRNA-target interactions using aNaïve Bayes classifier. We trained the algorithm with data from validated miRNA targetinteractions in CRC and other cancer entities. Furthermore, the correlation-based featureselection (CFS) was used to select a set of features that identify CRC-specific miRNAtarget interactions out of 70 features extracted through literature review. Then, thecontribution of each type of feature, i.e. position-based, sequence and structural features,among the selected features was analysed to the performance of the model indiscriminating between functional and non-functional miRNA–mRNA interactions in CRC.The performance of the classifier was evaluated based on the 10-fold cross validation usingreceiver operating characteristic (ROC) curves. The results showed that, though thestructural features ensure a high sensitivity of the model, the sequence features contributetowards the high specificity of the classifier. Additionally, the performance of our modelshowed a significant improvement in comparison to other widely used algorithms based onmachine learning.کلیدواژه ها
MicroRNA, Colorectal Cancer, Target Prediction, Feature, Naïve Bayes, Machine Learningمقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.