CFD Study of conical spouted beds containing heavy zirconia particles: Assessment of drag coefficient
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 818
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCFDACCI07_063
تاریخ نمایه سازی: 26 شهریور 1395
چکیده مقاله:
An Eulerian-Eulerian two-fluid model (TFM) in conjunction with the kinetic theory of granular flows (KTGF) was used in a full 3D computational framework. The gas-solid flow behavior of a conical spouted bed including heavy particles, zirconia, with density of 6050 kg/m3 that typically encountered in chemical vapor deposition. To reduce the computational time while maintaining the accuracy of the results, polyhedral mesh structure was utilized. Parametric study of the drag coefficient was performed. The hydrodynamics parameters including particle velocity and solid volume fraction profiles at different drag models were evaluated, and the overall behavior of particles in the bed was studied. Effect of different gas–solid exchange coefficients, namely Gidaspow et al. [1], Syamlal-O’Brien [2], Gibilaro et al. [3] and Ma-Ahmadi [4] were also studied. It is found that the drag model significantly affects the CFD results of the conical spouted beds containing heavy particles. The results showed that the Gidaspow et al. drag model lead to results that in better agreement with the experimental observations.
کلیدواژه ها:
نویسندگان
N Setarehshenas
Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan 98164-161, Iran
S.H Hosseini
Department of Chemical Engineering, Ilam University, Ilam 69315-516, Iran
M.Naser Esfahany
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
G Ahmadi
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699-5725, USA
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :