THE DOUBLE PENDULUM NUMERICAL ANALYSIS WITH LAGRANGIAN AND THE HAMILTONIAN EQUATIONS OF MOTIONS

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 689

فایل این مقاله در 9 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MECHAERO01_223

تاریخ نمایه سازی: 21 شهریور 1395

چکیده مقاله:

A planar double pendulum is a simple mechanical system that has two simple pendula attached end to end that exhibits chaotic behavior. The aim of this research will be to numerically analyze the dynamics of the double pendulum system. First, the physical system is introduced and a system of coordinates is fixed, and then the Lagrangian and the Hamiltonian equations of motions are derived.We will find that the system is governed by a set of coupled non‐linear ordinary differential equations and using these, the system can be simulated.Finally we analyze Poincare sections, the largest lyapunov exponent, progression of trajectories, and change of angular velocities with time for certain system parameters at varying initial conditions.All numerical analysis was done using MATLAB, specifically ode45, to solve the system of 4 first-order Hamilton’s Equations of Motion

نویسندگان

h biglari

Mechanical Engineering Department, Tabriz University , Tabriz, Iran

a.r jami

PhD Student, Tabriz University, Tabriz, Iran

m khoshravan

Mechanical Engineering Department, Tabriz University , Tabriz, Iran