A New Hybrid Recommender System Using Dynamic Fuzzy Clustering

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,429

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICIKT03_060

تاریخ نمایه سازی: 22 فروردین 1387

چکیده مقاله:

In this paper1, a new hybrid system is proposed for combining collaborative and content-based approaches that resolves some limitations of them.Specially, by the proposed system, the novelty and diversity of recommendations improve remarkably.Furthermore, the precision and recall of the proposed system is slightly less than those of the best existing hybrid system (collaborative via content) so that employing this system is justifiable. By this approach, the items that have not been yet rated by any user can be recommended. Collaborative and content-based systems utilized by this work, use a hybrid method based on fuzzy clustering model (fuzzy subtractive clustering) that combines model and memory-based approaches so that its precision is comparable with the precision of the memory-based approach and its scalability is comparable with the scalability of the model-based approach. Furthermore, in this work, a dynamic fuzzy clustering algorithm was proposed in which a measure is presented to determine the stage at which a complete reclustering is required. By applying this algorithm, the system is able to adapt to the dynamic and changing environment in a much less expensive manner in terms of computation times and resources.

کلیدواژه ها:

نویسندگان

Mojtaba Baghbani

Dept. of Computer Engineering University of Mashhad Mashhad, Iran

Reza Monsefi

Dept. of Computer Engineering University of Mashhad Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Adomavicius and A. Tuzhilin, ،Towards the Next Generation of ...
  • R. Baeza-Yates and B. Rib eiro-Neto, Modern Information Retrieval, Addi ...
  • _ Breese, D. Heckerman, and C. Kadie, *Empirical Analysis of ...
  • F. Crespo and R. Weber, ،A Methodology for Dynamic Data ...
  • C. Harue chaiyasak, _ Tipnoe, S. Kongyoung, _ Damrongrat, and ...
  • J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl, *Evaluating ...
  • O. Nasraoui, ،World Wide Web P ersonalization _ Encyclopedia of ...
  • نمایش کامل مراجع