Rough Set Reduction: A Novel Orthogonal Learning-based Grey Wolf Optimization Strategy

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 714

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CBCONF01_0836

تاریخ نمایه سازی: 16 شهریور 1395

چکیده مقاله:

Rough set theory can be regarded as a unique paradigm that can be effectively used in dealing with uncertain, inaccurate also vague quantities. This theory has been extensively investigated in several fields of science as an operational attribute reduction model, which can sustain the decisive characteristics of an initial set through discarding its redundant features. Current heuristic-based reduction approaches cannot perform efficiently in some cases. Hence, more enhanced, new stochastic optimizers are required to determine more better-quality reductions. Grey wolf algorithm is a new robust meta-optimizer that mimics the idealistic social dominance of wolves in nature. In this research, a novel orthogonal learning-based grey wolf approach is proposed to solve rough set reduction tasks. Based on presented technique, a minimal attribute reduct is discovered and validated efficiently. Several experiments are performed on well-known UCI datasets. The obtained results demonstrate competency and effectiveness of the proposed orthogonal learning-based GWO in tackling reduction tasks.

نویسندگان

Ali Asghar Heidari

School of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, IranSchool of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, Iran

Rahim Ali Abbaspour

School of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Applications, vol. 25, pp. 1329-1335, 2014. ...
  • A. R. Jordehi, "Enhanced leader PSO (ELPSO): a new PSO ...
  • A. R. Jordehi, "Chaotic bat swarm optimisation (CBSO), " Applied ...
  • algorithm for combined het and power economic dispatch, " International ...
  • Software, vol. 83, pp. 80-98, 2015. ...
  • H. Salimi, "Stochastic Fractal Search: A powerful metaheuristic algorithm, " ...
  • D. Tang, S. Dong, Y. Jiang, H. Li, and Y. ...
  • نمایش کامل مراجع