Rough Set Reduction: A Novel Orthogonal Learning-based Grey Wolf Optimization Strategy
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 714
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CBCONF01_0836
تاریخ نمایه سازی: 16 شهریور 1395
چکیده مقاله:
Rough set theory can be regarded as a unique paradigm that can be effectively used in dealing with uncertain, inaccurate also vague quantities. This theory has been extensively investigated in several fields of science as an operational attribute reduction model, which can sustain the decisive characteristics of an initial set through discarding its redundant features. Current heuristic-based reduction approaches cannot perform efficiently in some cases. Hence, more enhanced, new stochastic optimizers are required to determine more better-quality reductions. Grey wolf algorithm is a new robust meta-optimizer that mimics the idealistic social dominance of wolves in nature. In this research, a novel orthogonal learning-based grey wolf approach is proposed to solve rough set reduction tasks. Based on presented technique, a minimal attribute reduct is discovered and validated efficiently. Several experiments are performed on well-known UCI datasets. The obtained results demonstrate competency and effectiveness of the proposed orthogonal learning-based GWO in tackling reduction tasks.
کلیدواژه ها:
نویسندگان
Ali Asghar Heidari
School of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, IranSchool of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, Iran
Rahim Ali Abbaspour
School of Surveying and Geospatial Engineering College of Engineering, University of Tehran Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :