The Improvement of Association Rules to Use the Item-based Collaborative Filtering in the Recommender Systems

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 542

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CBCONF01_0342

تاریخ نمایه سازی: 16 شهریور 1395

چکیده مقاله:

Although in today's world, the Internet put a great volume of data as an opportunity for the user to access, in the absence of efficient management on the large size of available data there will be hinder for improvement. Therefore, today given to the increasing volume of data and information, there is a need to have a system to lead the users to the considered product or service. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Including the data mining methods is the generation of association rules that can be implemented through different algorithms such as FP-Growth. In this article using a data mining tool and FP-Growth algorithm application we have extracted the rules in two different dataset, and by investigating the support and confidence criteria we have assessed their efficiency. We also tried to improve the generated rules. The results can be used in collaborative filtering systems.

نویسندگان

Elnaz Hashemzadeh

Department of Industrial Engineering Khaje Nasir University of Technology Tehran, Iran

Hojjatollah Hamidi

Department of Industrial Engineering Khaje Nasir University of Technology Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :