ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

ارائه یک رویکرد جدید رهیافت کشف خطای گسترش یافته توسط تکنیک اولویت بندی در داده های حجیم بانک اطلاعات سلامت پزشکی

سال انتشار: 1395
کد COI مقاله: CITCOMP01_243
زبان مقاله: فارسیمشاهد این مقاله: 298
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
محتوای کامل این مقاله با فرمت WORD هم قابل دریافت می باشد.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 9 صفحه است به صورت فایل PDF و یا WORD در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله ارائه یک رویکرد جدید رهیافت کشف خطای گسترش یافته توسط تکنیک اولویت بندی در داده های حجیم بانک اطلاعات سلامت پزشکی

حسین باقری خامنه - دانشگاه آزاد اسلامی واحد آشتیان ،دانشجوی کارشناسی ارشد
سمیه مهماندوست - دانشگاه آزاد اسلامی واحد آشتیان ،دانشجوی کارشناسی ارشد
عباس کریمی - گروه کامپیوتر،دانشگاه آزاد اسلامی واحد مرکزی،هیئت علمی دانشگاه آزاد اسلامی واحد اراک

چکیده مقاله:

مشکل سیستم های تشخیص خطا بویژه در سیستم های ثبت داده حجیم پزشکی، این است که تنها حالت های خاصی از سیستم را در نظر می گیرند و همچنین میزان خطای رخ داده را مشخص نمی کنند . این در حالی است که خطای رخ داده می تواند در حد تنها تغییر یک فیلد در کل پایگاه داده باشد و یا اینکه شامل تخریب کل اطلاعات یک بیمارستان باشد . این محدوده خطا می بایست مشخص شده و براساس میزان خطای رخ داده استراتژی متفاوتی لحاظ گردد . مشکل سیستم های تشخیص خطا بویژه در سیستم های ثبت داده حجیم پزشکی، این است که تنها حالت های خاصی از سیستم را در نظر می گیرند و همچنین میزان خطای رخ داده را مشخص نمی کنند . این در حالی است که خطای رخ داده می تواند در حد تنها تغییر یک فیلد در کل پایگاه داده باشد و یا اینکه شامل تخریب کل اطلاعات یک بیمارستان باشد . این محدوده خطا می بایست مشخص شده و براساس میزان خطای رخ داده استراتژی متفاوتی لحاظ گردد . از شش الگوریتم مختلف دسته بندی شبکه عصبی، شبکه بیزین، درخت های تصمیم گیری,CART,QUEST,CHAID5.0C برای ساخت مدل استفاده نمودیم . شبکه عصبی دارای بالاترین دقت و به دنبال ان درخت CART دارای بالاترین دقت بود . درخت حاصل شده از الگوریتم CART استخراج شد از آنجایی که این الگوریتم دارای بالاترین دقت در بین الگوریتم های دیگر درخت تصمیم گیری دارد به بیان و شرح قوانین آن پرداختیم . از قوانین استخراج شده می توانیم برای تصمیم گیری های آتی استفاده نماییم . زیرا که با شناسایی رفتار و ویژگی های افراد می توانیم تا حد زیادی از شیوع بیماری آن ها جلوگیری نموده و با ارائه برنامه ها و راهکارها سلامت آن ها را حفظ نماییم .

کلیدواژه ها:

داده كاوي،Apriori, CART, C5.0, CHAID, QUEST

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/494172/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
باقری خامنه، حسین و مهماندوست، سمیه و کریمی، عباس،1395،ارائه یک رویکرد جدید رهیافت کشف خطای گسترش یافته توسط تکنیک اولویت بندی در داده های حجیم بانک اطلاعات سلامت پزشکی،کنفرانس بین المللی مهندسی کامپیوتر و فناوری اطلاعات،تهران،،،https://civilica.com/doc/494172

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1395، باقری خامنه، حسین؛ سمیه مهماندوست و عباس کریمی)
برای بار دوم به بعد: (1395، باقری خامنه؛ مهماندوست و کریمی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود ممقالهقاله لینک شده اند :

  • Ling, Y. , et al. , An Error Detecting and ...
  • Mao, Y. , et al. Medical Data Mining for Early ...
  • Muflikhah, L. and B. Baharudin. Document clustering using concept space ...
  • Kannan, A. , V. Mohan, and N. Anbazhagan. Image clustering ...
  • Zhou, X. , Y. Hu, and L. Guo, Text Categorization ...
  • Trindade, R. , N. C. Ferreira, and F. Caramelo, Development ...
  • مدیریت اطلاعات پژوهشی

    صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
    این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: دانشگاه آزاد
    تعداد مقالات: 658
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    پشتیبانی