A Framework for Categorize Feature Selection Algorithms for Classification and Clustering
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 811
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CITCOMP01_031
تاریخ نمایه سازی: 16 شهریور 1395
چکیده مقاله:
At first the dimension reduction techniques such as feature extraction and feature selection are explained. The Concepts, principles and existing feature selection methods for classification and clustering are also described. Then, a categorizing framework consisting of the procedures of finding selected subsets, including Search-based procedures and non-search based, evaluation criteria and data mining tasks will be completed and developed. During the grouping of Feature selection algorithms, categorizing framework represent guidelines to choose appropriate algorithm(s) for each application. In the above-mentioned categorizing, similar algorithms which follow the same process of selected subset finding and have the same evaluation criteria, are placed in the one block. Empty blocks indicates that no algorithm has been designed for them and this is a motive to start a new investigation in this regard. The design principles of an intelligent system for intelligent feature selection are established according to the above ordination.
کلیدواژه ها:
نویسندگان
Ali Asghar Nadri
Department of Computer Engineering, College of Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Farhad Rad
Department of Computer Engineering, College of Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Hamid Parvin
Department of Computer Engineering, College of Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :