COMBINATION OF MULTIPLE CLASSIFIERS WITH FUZZY INTEGRAL METHOD FOR CLASSIFING THE EEG SIGNALS IN BRAIN-COMPUTER INTERFACE
محل انتشار: نهمین کنفرانس دانشجویی مهندسی برق
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,054
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISCEE09_145
تاریخ نمایه سازی: 13 اسفند 1386
چکیده مقاله:
In this paper we study the effectiveness of using multiple classifier combination for EEG signal classification aiming to obtain more accurate results than it possible from each of the constituent classifiers. The developed system employs two linear classifiers (SVM,LDA) fused at the abstract and measurement levels for integrating information to reach a collective decision. For making decision, the majority voting scheme has been used. While at the measurement level, two types of combination methods have been investigated: one used fixed combination rules that don’t require prior training and a trainable combination method. For the second type, the fuzzy integral method was used. The ensemble classification task is completed by feeding the classifiers with five different features extracted from the EEG signal for imagination of right and left hands movements (i.e., at EEG channels C3 and C4). The results show that using classifier fusion methods improved the overall classification performance.
کلیدواژه ها:
EEG signal ، classification ، combination of multiple classifiers ، feature extraction ، majority voting ، fuzzy measure and integral
نویسندگان
Maryam Esmailee
Department of computer engineering University of Amirkabir,Tehran,Hafez Street,Iran.
Zahra Shoaie
Department of Computer engineering, University of Sharif, Tehran, Azadi Street, Iran.
Mohammad Rahmati
Department of Computer engineering, University of Amirkabir, Tehran,Hafez Street,Iran, ۶۴۵۴۰
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :