Static analysis of sandwich beams with functionally graded core using second order shear deformation beam theory

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 588

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELEMECHCONF03_0001

تاریخ نمایه سازی: 9 مرداد 1395

چکیده مقاله:

In this paper, an analytical approach for static analysis of sandwich beam with functionally graded (FG) core is presented. The aterial properties of the functionally graded layer are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the second order shear deformation beam theory (SBT), the equations of motion are derived from Hamilton’s principle. Analytical solutions for static analysis are obtained. The method is validated by comparing numerical results with the results obtained in the literature. The effects of the volume fraction index on the static behavior of . sandwich beam with FG core are discussed

کلیدواژه ها:

نویسندگان

Davoud Sirati

Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran

Morteza Shahmohammadi

Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran

Masood Askari

Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran

Milad Hayati

Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sankar, B.V. (201). An elasticity solution for functionally graded beams. ...
  • Zhong, Z. and Yu, T. (2007). Analytical Solution of a ...
  • Li, X.F. (2008). A unified approach for analyzing static and ...
  • Sina, S. A. Navazi, H. M.and Haddadpour, H. (2009). An ...
  • Matsunaga, H. (1999). Vibration and buckling of deep beam-coulmns On ...
  • Santare, M.H. (2000). Use of graded finite elemene to model ...
  • Chen, Q. and Chan, Y.W. (2000). Integral finite element method ...
  • Paulino, G.H. and Jin, Z.H. (2001). C orrespondence principle in ...
  • Chakraborty, A., Gopalakri shnan, S. and Reddy, J.N. (2003). A ...
  • Simsek, M. (2010). Fundamental frequency analysis of functionally graded beams ...
  • Simsek, M. (2010). Vibration analysis of a functionally graded beam ...
  • Ferezqi, H.Z.. Tahani, M. and Toussi, H.E. (2010). Analytical approach ...
  • Li, S.R. and Batra, R.C. (2013). Relations between buckling loads ...
  • Al shorbagyAmal, E. Eltaher, M. A. and Mahmoud, F. F. ...
  • Thai, H.T, Vo, T.P. (2012). Bending and free vibration of ...
  • نمایش کامل مراجع