CFD study on hydrogen production during sorption-enhanced glycerol steam reforming
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 937
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CHCONF02_253
تاریخ نمایه سازی: 9 مرداد 1395
چکیده مقاله:
This study presents a 2D-axisymmetric computational fluid dynamic (CFD) model to investigate the performance of sorption-enhanced during glycerol steam reforming (GSR) for hydrogen production. The proposed CFD model provided the local information of velocity, pressure and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of sorption-enhanced fixed bed reactor during GSR reaction was carried out by experimental data and a good agreement between modeling results and experimental data was achieved. In the present model, a tubular reactor with length of 100 mm was considered, in which the Co-Ni/Al2O3 as catalyst and CaO as CO2 adsorbent were filled in reaction zone. Hence, the effects of the some important operating parameters (reaction temperature and reaction pressure) on the performances of sorption-enhanced fixed bed reactor were studied in terms of glycerol conversion and hydrogen yield. The CFD results showed that the suggested system during GSR reaction presents higher performance with respect to once obtained in the common fixed bed reactor (without CO2 capturing). In particular, in the best operating condition, hydrogen production rate in reaction zone show an enhancement around 12% in the sorption-enhanced fixed bed reactor over once achieved in the common fixed bed reactor.
کلیدواژه ها:
نویسندگان
K Ghasemzadeh
Chemical engineering department, Urmia University of Technology, Urmia, Iran
M Ghahremani
Chemical engineering department, Urmia University of Technology, Urmia, Iran
R Zeynali
Chemical engineering department, Urmia University of Technology, Urmia, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :