Data Placement of Scientific Workflows based on Nature Inspired Algorithms on Cloud

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 614

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISCEE18_113

تاریخ نمایه سازی: 12 تیر 1395

چکیده مقاله:

Nowadays, there are big data which are transferring among data centers on cloud environments. These data consume network bandwidth, storage resources and may use up some computations. These resources are distributed geographically on the cloud environment. Since the policy of data centers differs from each other in the cloud environments, the utilization of them would certainly cause significant impact on the costs that the end users have to pay for it. Each task needs some input datasets and these data must be available at the computation host. There might also be some tasks which need the outputs of other tasks on the other data centers, as their input datasets, so the data need to be retrieved from the other resources. Therefore, the data movements would be inevitable among data centers in the cloud environment. The nature inspired algorithms provided a solution for solving complex problems resulting in outstanding outcome. In this work, the firefly algorithm and an extended genetic algorithm have been utilized to produce the optimal data placement and their outputs are compared to random data placement. The result shows about 15% improvement against random data placement.

نویسندگان

Amirmohammad Pasdar

Computer department of Khayyam University

Toktam Ghafarian

Computer department of Khayyam University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Weiss, "Computing in the cloud, " ACM Networker, vol ...
  • M. Brantner, D. Florescuy, D. Graf, D. Kossman [14] L. ...
  • and T. Kraska, "Building a Database on S3, " SIGMOD, ...
  • R. Buyya, _ M arket-Oriented Cloud Computing: as the 5th ...
  • R. Grossman, "Data mining using high performance sphere, " SIGKDD, ...
  • data clouds: experimental studies using sector and [16] E. I. ...
  • C. Moretti, J. Bulson, D. Thain and P. Flynn, "All- ...
  • t ranian Student Conference on Electrical Engineering Payame Noor University ...
  • http : //www. c loudbus .org/cloudsim. [Accessed 14 july 2014]. ...
  • T. Mantere and J. Koljonen, "Solving, rating and generating Sudoku ...
  • "The CLOUDS Lab: Flagship Projects - Gridbus and ...
  • نمایش کامل مراجع