using personality Enhanced item-based recommender system for cold start

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 610

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEEE07_354

تاریخ نمایه سازی: 19 اردیبهشت 1395

چکیده مقاله:

Recommender systems which are a subset of web mining are currently one of the widely applied aspects of data mining. Recommender systems help users more easily and quickly find products that they truly prefer amidst the enormous volume of information available to them. Since providing a user-friendly environment is one of the most important things in e-commerce, this branch of web mining is popular among researchers. In this paper we propose a method that combines personality traits into the traditional rating-based similarity computation in the framework of item-based recommender systems with the motivation to make good recommendations for new users who have rated a few items. We further compare our method with pure traditional ratings-based similarity and other similar systems in several experimental conditions. Experimental results shows that the proposed algorithm provides more advantages in terms of improving recommendation quality and it can efficiently address the new user problem.

نویسندگان

Fatemeh Khatouni

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University Najafabad, Isfahan, Iran

Mohammad Naderi Dehkordi

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University Najafabad, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Felfering _ G. Friendrich , and L. Schmi dt_Thieme ...
  • J. Schafer, B.J. Konstan, and J. Riedl, "E-commerce rec ommendation ...
  • R. Ghiasi, H. Hani Zavareh H, "Evaluation and classification customized ...
  • C.Desrosier , G. Karypis, _ Comprehensive Survey of Neighborhood- based ...
  • A. Felfering, R. Burke, _ onstraint-based Recommender Systems: technologies and ...
  • Computer supported copertive work conf, pp: 175-486, proc1994. ...
  • W.Hill, L. Stead, M. Rosenstein, and G. Furmas, _ TRecommending ...
  • C. Wei, R.T. Rust, P.K. Kannan, :A survey of rec ...
  • G. Linden, B. Smith, and .J. York, "Amazon.com rec ommendations ...
  • J. Riedl, A. Jameson, J. Konstan _ "AI Techniques for ...
  • H. Drachsler, H. Hummel, and R. Koper, "Personal recommender systems ...
  • نمایش کامل مراجع