Improving the Noise Reduction Performance Using AEC-GSC for Reverberant Environments
محل انتشار: دوازدهمین کنفرانس سالانه انجمن کامپیوتر ایران
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,316
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ACCSI12_180
تاریخ نمایه سازی: 23 دی 1386
چکیده مقاله:
In this paper, noise reduction performance of the Generalized Side-lobe Canceller (GSC) algorithm and its performance degradation under reverberant environments are briefly reviewed. An acoustic echo canceller (AEC) is employed as a pre-processor for GSC noise reduction algorithm in order to improve the noise reduction performance of the GSC especially in highly reverberant environments where GSC alone fails to work properly. The proposed AEC-GSC algorithm consists of an AEC pre-processor, which includes Segment Variable Stepsize Proportionate Normalized Least Mean Square (SVS-PNLMS) algorithm recently proposed, and the GSC noise reduction algorithm.
The performance of both AEC-GSC and GSC alone is evaluated through computer simulations, using real speech recordings in reverberant room environment. Through different computer simulations it is demonstrated that the proposed AEC-GSC structure performs better than GSC alone in terms of speech distortion parameters and ERLE. It also presents a better tracking behavior between the pause intervals during a speech signal due to using the SVS-PNLMS algorithm in its AEC section.
کلیدواژه ها:
AEC ، AEC-BF ، AEC-GSC ، BF-AEC ، ERLE ، GSC ، Microphone Array ، NLMS ، Speech intelligibility ، Speech Distortion ، SVS-PNLMS
نویسندگان
Pejman Mowlaee Begzade Mahale
Msc Student, Electrical Department, Iran University of Science and Technology (IUST), Tehran, Iran
Mohammad Hossein Kahaei
Associate Professor, Faculty of Electrical Engineering, IUST, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :