A New Technique to Improve the Performance of Distributed Association Rules Mining

سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,971

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ACCSI12_133

تاریخ نمایه سازی: 23 دی 1386

چکیده مقاله:

Mining association rules in distributed environments is one of the most important problems in the field of knowledge discovery and parallel and distributed computing. Communication and computation are two important factors in distributed mining of association rules. Current proposed distributed association rules mining algorithms treat all types of frequent itemsets as being the same, while there are different types of itemsets in distributed databases, e.g., derivable and non-derivable. In this study a new technique is developed to reduce communication and computation by exploiting derivability of itemsets in distributed data. In this technique derivable frequent itemsets are mined without any communication and I/O costs. This approach can be utilized in every distributed association rules mining algorithm. Experimental evaluations on real-life datasets show the effectiveness of our technique in terms of communication and run time.

کلیدواژه ها:

Distributed association rules mining ، data mining ، Non-derivable itemsets ، Distributed deduction rules

نویسندگان

Mahmood Deypir

Department of Computer Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.

Mohammad Hadi Sadreddini

Department of Computer Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • R .Agrawal, T .Imiliniski, and A.Swami. Mining association rules between ...
  • H. Toivonen. Sampling large databases for association rules. In T.M. ...
  • J.Han, J.Pie, Y.Yin, and R.Mao. Mining fequent pattern without candidate ...
  • R. Agrawal and R.Srikant, Fast Algorithms for mining Association Rules, ...
  • S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic ...
  • J.S. Park, M.-S. Chen, and P.S. Yu. An effective hash ...
  • F.Bodon. A fast apriori imp lementation. In Proceedings of the ...
  • C. Borgelt. Efficient i mp lementations of apriori and eclat. ...
  • F.Bodon. Surprising results of trie-based fim algorithms. In Proceedings of ...
  • R.Agrawal and J.Shafer. Parallel mining of association rules. IEEE Transaction ...
  • D. W. Cheung, et al. A Fast Distributed Algorithm for ...
  • نمایش کامل مراجع