ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

A Background Model Initialization Algorithm Based on QR-Decomposition

تعداد صفحات: 8 | تعداد نمایش خلاصه: 2429 | نظرات: 0
سال انتشار: 1385
کد COI مقاله: ICMVIP04_058
زبان مقاله: انگلیسی
(فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.

برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید.در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.

لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.

برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.

قیمت این مقاله : 0 تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله A Background Model Initialization Algorithm Based on QR-Decomposition

Fathy - Iran University of Science and Technology, Iran
Analoui - Iran University of Science and Technology, Iran
Mozayani - Iran University of Science and Technology, Iran
Amintoosi - Iran University of Science and Technology, Iran

چکیده مقاله:

Background subtraction is a major part of many motion detection, tracking and surveillance systems. In this paper a new algorithm for the purpose of the background model initialization has been presented. The key idea of the proposed method lies in the identification of the background based on QRDecomposition method in linear algebra. R-values produced with QR-Decomposition can be applied to decompose a given system to indicate the degree of the significance of the decomposed parts. We split the image into small blocks and select the background blocks with the weakest contribution, according to the assigned R-values. The main advantage of the proposed method is that in contrast to many other methods, here, there is no need for an empty scene with no foreground object. Simulation results showed that the proposed method produced better background model with respect to some others.

کلیدواژه ها:

Background Subtraction, QRDecomposition, Gaussain Mixture Model, Singular Value Decomposition

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/44295/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Fathy, و Analoui, و Mozayani, و Amintoosi, ,1385,A Background Model Initialization Algorithm Based on QR-Decomposition,چهارمین کنفرانس ماشین بینایی و پردازش تصویر,مشهد,,,https://civilica.com/doc/44295

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1385, Fathy, ؛ Analoui و Mozayani و Amintoosi)
برای بار دوم به بعد: (1385, Fathy؛ Analoui و Mozayani و Amintoosi)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود ممقالهقاله لینک شده اند :

  • Wren, Christopher R., Ali Azarbayejani, Trevor Darrell, and Alex Pentland.، ...
  • C. Stauffer and E. Grimson. Adaptive background mixture models for ...
  • D.S.Lee, ،Effective Gaussian Mixture Learning for Video Background Subtraction', In ...
  • A. Elgammal, D. Harwood, and L. Davis.، Non parametric model ...
  • Fatih Porikli, Oncel Tuzel, 4Bayesian Background Modeling for Foreground Detection?, ...
  • D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, A. K. ...
  • N. Friedman and S. Russell, _ Segmentation in Video Sequences: ...
  • J. Yen and L.Wang, *'Simplifying fuzzy rule- based models using ...
  • Kaynak, O., et al., 4Complexity reduction of rule based models: ...
  • Magne Setnes, Robert Babuska, ،Rule Base Reduction: Some Comments on ...
  • A R G Heesterman _ MATRICES and their ROOTS - ...
  • Q. Zang, R. Klette, ،Robust Background Subtraction and Maintenance?, in ...
  • Pattern Recognition (ICPR 04), Vol. 2, pp.90- 93, Aug 2004. ...
  • مدیریت اطلاعات پژوهشی

    صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز: دانشگاه دولتی
    تعداد مقالات: 20,504
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مقالات مرتبط جدید

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    پشتیبانی