Mapping of forest infection with Loranthus europaeus in Zagros forests of Iran using Kriging method
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,388
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ARUES03_105
تاریخ نمایه سازی: 30 بهمن 1394
چکیده مقاله:
Yellow Mistletoe (Loranthus europaeus) is one of the impacting pathogens in the Zagros forests of Iran. Spatial variability and mapping of this agent are important for its control and management. For this purpose, a forest patch of 34 ha in the Ilam province of Iran was selected, and 171 individual trees in 24 transects for species, severity and density of infections with Yellow Mistletoe as well as Cartesian coordinates were considered. To investigate the spatial variability and mapping of forest infection, Kriging interpolation method was used. Results showed that 487 of individual trees are infected with Yellow Mistletoe and that its distribution has a strong spatial structure (88%) as well as a hotspot of 222 m range of influence. Appropriate distance for transect sampling was determined to be 134 m, based on a variogram analysis. Kriging showed acceptable variance error for mapping. However, Kriging shows some advantages and thus seems to be more recommendable for the interpolation and mapping of Yellow Mistletoe infection in this region
کلیدواژه ها:
نویسندگان
Bahareh Sohrabi Saraj
PhD Student, Islamic Azad University, Science and Research Branch, Forestry Department, Tehran, Iran;
Hadi Kiadaliri
Assistant Professor, Islamic Azad University, Science and Research Branch, Forestry Department, Tehran, Iran
Sasan Babaei Kafaki
Assistant Professor, Islamic Azad University, Science and Research Branch, Forestry Department, Tehran, Iran
Reza Akhavan
Associate Professor, Research Institute of Forests and Rangelands, Tehran, Iran;
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :