Construction projects critical success factors extraction using rough set theory, a case study of Iranian construction companies

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 725

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MSECONF01_169

تاریخ نمایه سازی: 27 بهمن 1394

چکیده مقاله:

It is of great importance to identify critical success factors (CSFs) of projects. Many of researchers have attempted to identify, categorize and prioritize these factors. It is notable that CSFs of different organizations under various conditions are different from other organizations. This paper identifies success factors of Iranian construction projects using artificial intelligence and rough sets theory. The major advantages of artificial intelligence can be extraction of success factors using data from projects carried out by these techniques. This leads to active identification of project CSFs over time under changing conditions. In this paper, we survey among 07 parameters related to construction projects and three functional measures including time, cost and project quality, to identify this factors. Using Rough set theory and expert judgment, success factors of Iranian construction project were identified and classified by test series based on t-test. According to results, the CSFs related to Iranian construction projects included are "on-time financing by employee", "an updated schedule", "commitment of employees to the schedule" and "preliminary studies and detailed designs by the employer and consultant team". The present study used elite knowledge of project experts

نویسندگان

Mehri Chehrehpak

Faculty of Management and Accounting, South Tehran Branch, Islamic Azad University, Tehran, Iran

Alireza Alizadeh

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Jensen, R., & Shen, Q. (5770). A rough set-aided system ...
  • Liang, G. F., Pang, D. L, & Cui, X. N. ...
  • Mansmann, S., Neumuth, T., & Scholl, M. H. (5770). OLAP ...
  • Pawlak, Z. (0915). Rough sets. International Journal of Computer & ...
  • نمایش کامل مراجع