Presenting an Effective Algorithm for Tracking of Moving ObjectBased on Support Vector Machine

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 663

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

REGCMAES02_152

تاریخ نمایه سازی: 30 دی 1394

چکیده مقاله:

In this paper, an effective algorithm has been presented for object tracking in videoimages using color and texture features and with the help of accelerated support vector machine. In the proposed method, object region is firstly determined by user in the first frame; then, a region as area as the object and around it is considered as background. After that, color and texture features are extracted from object and background regions, trained to the support vector machine having been accelerated by subtracting training vectors, and tested. The first output will be a binary image in which the object has been exactly separated from its surrounding background. Then, color and texture features of the exact background region being obtained in the previous stage are developed in order to become resistant against background changes in next frames. In the following, features of object and developed background are used again for training of support vector machine and they have been used for recognition of object pixels in the next frame. In the proposed method, center of gravity of object and mean shift process have been used for object locating.

نویسندگان

Hamed Mohammadi Azni

Computer and IT engineering Faculty, Islamic Azad University, Qazvin Branch, Iran

Fariborz Mahmudi

Computer and IT engineering Faculty, Islamic Azad University, Qazvin Branch, Iran

Shahrbano Akbarpoor

Islamic Azad University, Jouybar Branch, Jouybar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Trajectory Recovery for Tracking Multiple Objects and 3Dه [7] R. ...
  • : اردیبهشت 1394 دانشگاه آزاد اسلامی واحد جویبار ...
  • A. Yilmaz, O. Javed, and M. Shah, "Object tracking: A ...
  • I. Sethi and R. Jain, "Finding Trajectories of Feature Points ...
  • K. Rangarajan and M. Shah, "Establishing Motion Correspondenc e, in: ...
  • C. Veenman, M. Reinders and E. Backer, "Resolving Motion Co ...
  • K. Shafique and M. Shah, _ Non-Iterative Greedy Algorithm For ...
  • Y. Boykov and D. Huttenlocher, "Adaptive Bayesian Recognition in Tracking ...
  • G. Kitagawa, ، 0Non-Gaussian State-Space Modeling of Nonstationary Time Series, ...
  • B. Li and R. Chellappa, "Simultaneous Tracking and Verification via ...
  • Iterative Image Registration Technique with An An:ه [10] B. _ ...
  • P. Fieguth and D. Terzopoulos, "Color-Based Tracking of Heads and ...
  • D. Comaniciu, V. Ramesh and P Meer, "Kernel-based object tracking, ...
  • D. Comaniciu and P. Meer, "Mean shift analysis and applications, ...
  • D. Comaniciu and P. Meer, "Mean shift: A robust approach ...
  • R.Collins, Y.Liu, "On-Line Selection of Discriminative Tracking Features, " in: ...
  • R.Collins, Y.Liu and M.Leordeanu, "On-Line Selection of Discriminative Tracking Features, ...
  • S. Avidan, "Ensemble tracking, " IEEE Transactions On Pattern Analysis ...
  • Rucklidge, "Tracking nonrigid objects in complex scenes, " ب [18] ...
  • M. Kass, A. Witkin and D Terzopoulos, "Snakes: active contour ...
  • I. Haritaoglu, D. Harwood and L. Davis, _ real time ...
  • C. Wren, A. Azarbayejani and A. Pentland, "Pfinder: Real-Time Tracking ...
  • C. Stauffer and W. Grimson, "Learning patterns of activity using ...
  • L. Liyuan and L. Maylor, "Integrating intensity and texture differences ...
  • نمایش کامل مراجع