The Application of Data Mining Techniques in Agricultural Science

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 789

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

COMCONF01_039

تاریخ نمایه سازی: 8 آذر 1394

چکیده مقاله:

Information Technology has a positive impact on other disciplines. Using today's technology, precision agriculture and Information Technology are mixed together. Use of Information Technology in agriculture will lead to improvements in productivity. For this purpose, the raw data is transformed into useful information through data mining. This research determined whether data mining techniques can also be used to improve pattern recognition and analysis of large growth factors of ornamental plants experimental datasets. Furthermore, the research aimed to establish data mining techniques can be used to assist in the classification and regression methods by determining whether meaningful patterns exist various growth factors of ornamental plants characterized at various research sites across Kish Island. Different data mining techniques were used analyze a large data base of ornamental plants properties attributes. The data base has been collected from different plants of Kish Island in various areas in order to determine, classify and predict effective growth factors on blooming. In this research, analyzed data with regression technique showed the effect of chlorophyll content on the number of flowers. The analysis of these agricultural data base with different data mining methods may have some advantages in agriculture

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Fayadd U, Pi atee sky-Shapiro G, Smyth P. Data Mining ...
  • Cunningham SJ, Holmes G. Developing innovative applications in agriculture using ...
  • Ashok Kumar D, Kannathasan N. A Survey On Data Mining ...
  • Mitra S, Mitra P, Pal SK. Evolutionary modular Design of ...
  • Xu K, Wang Z, Leung KS. Using a new type ...
  • Brenning A. Spatial prediction models for landslide hazards: review, comparison ...
  • Brenning A, Itzerott S. Comparing classifiers for crop identification based ...
  • Russell S, Lodwick W. Fuzzy clustering in data mining for ...
  • Zhang Y _ Fraser M D, Gagliano R A, Kandel ...
  • Au W H, Chan K C C An effective algorithm ...
  • Kacprzyk J, Zadrozny S. Data mining via linguistic summaries of ...
  • Bosc P, Pivert O, Ughetto L. Database mining for the ...
  • Lee R S, Liu J N K. Tropical cyclone identification ...
  • Lee R C T. Cluster analysis and its applications. In ...
  • Everitt B S. Cluster Analysis. third edition. USA: Halsted press; ...
  • Abdull A, Brobst S, Pervaiz I, Umar M, Nisar A. ...
  • 7.Abdullah A, Hussain A. Data Mining a New Pilot Agriculture ...
  • Tellaeche A, BurgosArtizzu X P, Pajares G, Ribeiro A. A ...
  • Witten I H, Frank E. Data mining practical machine learning ...
  • Oteros J, Garcia-Mozo H, Hervas -Martinez C, Galan C. Year ...
  • Arockiam L, Baskar S S, Jeyasimman L. Overview of Clustering ...
  • Sahu H, Shrma S, Gondhalakar S. A brief overview on ...
  • Fakir M S A, Mostafa M G, Karim M R, ...
  • Jackson J. Data mining: a conceptual overview, communic ations of ...
  • Armstrong L, Diepeveen D. The application of data mining techniques ...
  • نمایش کامل مراجع