A Holonic Multi Agent System For Operating Smart Grid Market
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,165
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ETEC04_383
تاریخ نمایه سازی: 19 تیر 1394
چکیده مقاله:
Smart Grid is known as the next generation of power systems. This technology is the main solution to challenges such as increasing electric demand, aging utility infrastructure and workforce, and the environmental impact of greenhouse gases produced during electric generation. The agent based functions are highly autonomous and operate independently while managing energy consumption and production by human is autonomous and independently in power systems. The smart grid consists of several operation layers and in each layer there are several operating segments that must be coordinated with each other. These operating segments can map to an organization to reduce the complexity of coordination between them. A holonic multi agent system presents hierarchical organization structure with decentralized control. This paper proposes a model of holonic multi agent system (HMAS) for smart grid market to manage electricity agents in Smart grid operation. This approach controls the smart grid complexity by intelligent agents in a holonic organization mounted on smart grid infrastructure. The presented approach utilizes the advantages of using the HMAS technology for managing smart grid energy market and trading strategies to obtain satisfying energy exchange and energy price between the production units and loads in the smart grid.
کلیدواژه ها:
نویسندگان
Ahmad Akbari
Student at Department of Artificial Intelligence, Iran University of Science and Technology, Tehran,
Nasser Mozayani
Associate Professor, School of Computer Eng., Iran University of Science and Technology ,Tehran,Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :