Fuzzy stochastic congestion model for data envelopment analysis

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 656

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DEA06_169

تاریخ نمایه سازی: 16 خرداد 1394

چکیده مقاله:

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and outputs. Conventional DEA models assume that inputs and outputs are measured by exact values on a ratio scale. However, the observed values of the input and output data in real-world problems are often vague or random. Indeed, decision makers (DMs) may encounter a hybrid uncertain environment where fuzziness and randomness coexist in a problem. Several researchers have proposed various fuzzy methods for dealing with the ambiguous and random data in DEA. In this paper, we propose three fuzzy DEA models with respect to probability-possibility, probability-necessity and probability-credibility constraints. In addition to addressing the possibility, necessity and credibility constraints in the DEA model we also consider the probability constraints. . In thispaper we provide an extension to the DEA based congestion concept with input and output data are assumed to be characterized by fuzzy random variables (FRVs) fuzzy data.

نویسندگان

M Sayfpanah

Ph.D. student Department of Applied Mathematics, Islamic Azad University, Tehran

H. Kheirollahi

Department of Mathematics, Islamic Azad University, Sanandaj, Iran

F Hosseinzadeh Lotfi

professor, Department of Applied Mathematics, Islamic Azad University, Tehran