Modeling of an Autothermal Catalytic Monolith Reformer to Obtain Hydrogen for Fuel Cells

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 713

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC07_330

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

Interest in fuel cell as a clean power generation unit has increased recently. Hydrogen is the preferred fuel for fuel cells due to high reactivity for electrochemical reaction at anode. Highstorage pressure of hydrogen directed the researchers to develop fuel processors for distributed hydrogen generation. In this article, a three dimensional CFD code was developed and validated to simulate the performance of a catalytic monolith reformer in which methane autothermalreforming was used for hydrogen production. A single channel of the monolith reformer was selected as the computational domain. Obtained results provided an adequate match toexperimental data from literature with respect to the reactor temperature profile and the dry molefractions of H2, CO2, and CO at reactor outlet. The percentage difference between each experimental measurement of the dry mole fraction of hydrogen and the corresponding parameter obtained from the model was less than 16%.

نویسندگان

s.m Safdarnejad

Green Research Center, Iran University of Science and Technology, Tehran, Iran

s Rowshanzamir

Green Research Center, Iran University of Science and Technology, Tehran, Iran

m.h Eikani

Green Research Center, Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • L. Shi, D. J. Bayless et al., A CFD modl ...
  • L. Shi, D. J. Bayless et al., A model of ...
  • C.R. Jung, A. Kundu, et al., Hydrogen from aluminum in ...
  • A. Qi, B. Peppley, K. Karan, Integrated fuel processors for ...
  • D.L. Trimm, C. Lam, The combustion of methane On p ...
  • Numaguchi, T., Kikuchi, K., Intrinsic kinetics and design simulation in ...
  • J. Xu, G.F. Froment, Methane steam reforming, methanation and water-gas ...
  • J. Dias, et al., Autothermal reforming of methane OVer Ni/ ...
  • H. Mei, C. Li, et al., Modeling of a metal ...
  • M.Zahedi Nezhad, et al., Autothermal reforming of methane to synthesis ...
  • S. Rabe, T. B. Truong, F. Vogel. Catalytic autothermal reforming ...
  • J. Chen, et al. Mathematict modeling of monolith catalysts and ...
  • P. Canu, S. Vecchi. CFD simulation of reactive flows: catalytic ...
  • A.K. Chaniotis, D. Poulikakos, Modeling and optimization of catalytic partial ...
  • M. Hong, et al., Simulation of Catalytic Combustion of Methane ...
  • Fluent, Inc. FLUENT 6.3 users" guide. Lebanon, NH: Fluent, Inc. ...
  • D.L. Hoang, S.H. Chan, Modeling of a catalytic autothermal methane ...
  • L. Ma, D.L. Trimm, C. Jiang. The design and testing ...
  • V.L. Barrio, et al., Reactor modeling to simulate catalytic partial ...
  • نمایش کامل مراجع