A New Mutation Mechanism in the Ant Colony Algorithm

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 914

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MHAA01_044

تاریخ نمایه سازی: 17 اسفند 1393

چکیده مقاله:

Ant Colony Optimization (ACO) is a type of metaheuristic algorithms for optimization problems. The main problem of all metaheuristic algorithms are local optima. In this paper some simple mutation methods are proposed in ACO. The main parameters in using mutation methods are improving answer accuracy and the effect of mutation on runtime. The presented mutation methods can expand searching range and avoid local minima by randomly changing one or more elements of the local best solution, which is similar to the mutation operation in genetic algorithm. As the mutation operation is simple to implement, the performance of MACO is superior with almost the same computational complexity. The proposed methods are applied to TSP in a large dataset and simulation results confirm that the ACO with these methods has much better performance than conventional ACO algorithms

کلیدواژه ها:

نویسندگان

keivan borna

Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran,

vahid hajihashemi

Faculty of Engineering, Kharazmi University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Dorigo, V. Maniezzo, A. Colorni (1991). The ant system: ...
  • W.]. Gutjahr (2000) A graph-based Ant System and its convergence ...
  • T.A. Feo, M.G.C. Resende (1995) Greedy randomized adaptive search procedures, ...
  • ].H. Holland (1975) Adaptation in natural and artificial systems, University ...
  • Laguna, M., & Glover, F. (1993). Integrating target analysis and ...
  • Zhen-Ping, L, & Bavarian, B. (1992). Optimization of job scheduling ...
  • Dorigo, M., Birattari, M., & Stitzle, T. (2006). Ant colony ...
  • Dorigo, M., & Gambardella, L. M. (1996). A study of ...
  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony System: ...
  • Stitzle, T., & Hoos, H. H. (2000). MAX-MIN ant system. ...
  • Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A ...
  • Maniezzo, V. (1999). Exact and approximate n _ n deterministic ...
  • Blum, C., Roli, A., & Dorigo, M. (2001]. HC-ACO: The ...
  • Naimi, H. M., & Taherinejad, N. (2009). New robust and ...
  • Wu, Z. L, Zhao, N., Ren, G. H., & Quan, ...
  • Lerman, K., Galstyan, A., Matinolli, M., & jspeert, A. (2002). ...
  • Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization ...
  • Li, Y., & Gong, S. H. (2003). Dynamic ant colony ...
  • S ivagami nathan, R. K., & Ramakri shnan, S. (2007). ...
  • Kaveh, A., & Shahrouzi, M. (2008). Optimal structural design family ...
  • Lee, Z. L, Su, S. F., Chuang, C. C, & ...
  • C.].C.H. Watkins, Learning with delayed rewards. Ph.D. dissertation, Psychology Department, ...
  • L.P. Kaelbling, L.M. Littman and A.W. Moore, _ Re inforcement ...
  • G. Reinelt, The traveling salesman: comp utational solutions for TSP ...
  • D.]. Rosenkrantz, R.E. Stearns, and P.M. Lewis, "An analysis of ...
  • نمایش کامل مراجع