Intelligent Predictive Control of a Solar Power Plant with Neuro-Fuzzy Identifier and Evolutionary Programming Optimizer

سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,308

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PSC18_018

تاریخ نمایه سازی: 28 اردیبهشت 1386

چکیده مقاله:

The paper presents an intelligent predictive control to govern the dynamics of a solar power plant system. This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neuro-fuzzy predictive control, can be a better match to govern the system dynamics. In our proposed method, a neuro-fuzzy model identifies the future behavior of the system over a certain prediction horizon while an optimizer algorithm based on EP determines the input sequence. The first value of this sequence is applied to the plant. Using the proposed intelligent predictive controller, the performance of outlet temperature tracking problem in a solar power plant is investigated. Simulation results demonstrate the effectiveness and superiority of the proposed approach.

نویسندگان

Hassan Ebrahimirad

Young Researchers Center of Azad University

Farhad Besharati

Young Research Centre of Azad University

Mahdi Jalili-Kharaajoo

Young Research Centre of Azad University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Camacho, E.F. Model predictive control, Springer Verlag, 1998. ...
  • Garcia, C.E., Prett, D.M., and Morari, M. Model predictive control: ...
  • Badgwell, A.B., Qin, S.J. Review of nonlinear model predictive control ...
  • Parker, R.S., Gatzke E.P., Mahadevan, R., Meadows, E.S., and Doyle, ...
  • Babuska, R., Botto, M.A., Costa, J.S.D., and Verbruggen, H.B. Neural ...
  • Arahal, M.R., Berenguel, M., and Camacho, E.F. Neural identification applied ...
  • Lennox, B., and Montague, G. Neural network control of a ...
  • Petrovic, I., Rac, Z., and Peric, N. Neural network based ...
  • Ghezelayagh, H. and Lee, K.Y. Application of neuro-fuzzy identification in ...
  • Fogel, L.J., The future of evolutionary programming. Proc. 24" Asilomar ...
  • Lai, L.L., Intelligent system application in power engineering: Evolutionary programming ...
  • Camacho, E.F. and Berenguel, M., Robust adaptive model predictive control ...
  • Pickhardt, R. and Silva, R., Application of a nonlinear predictive ...
  • Coito, F., Lemones, J., Silva, R. and Mosca, E., Adaptive ...
  • Henriques, J., Cardoso, A. and Dourado, A., Supervision and C-means ...
  • Narandra, K.S. and K. Parthasarathy, Identification and control of dynamical ...
  • Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning. ...
  • Mason, A.J. Partition coefficients, static deception and deceptive problems for ...
  • Dimeo, R. and K.Y. Lee Boiler-turbine control system design using ...
  • نمایش کامل مراجع