Comparison and evaluation between several spectral based endmember extraction algorithms on real hyperspectral remotely sensed images

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,473

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CCITC01_053

تاریخ نمایه سازی: 27 آبان 1393

چکیده مقاله:

Mixing constituent elements at the pixel level occurs as the result of insufficient spatial resolution in hyperspectral images. Extraction of spectral signatures of such constituent elements which are known as endmembers in each mixed pixel and estimating the abundance maps of such pure spectral signatures are two important roles in Spectral Mixture Analysis(SMA). Most of algorithms, which was proposed for endmember extraction, are relayed on only spectral information such as OSP,N-Finder,VCA,PPI,IEA, SGA without considering spatial arrangement and distribution of image pixels. We review these algorithms and compare them from the view points of RMSE and processing time, on two real hyperspectral Aviris Cuprite and Indian Pines scenes. We demonstrated that VCA results the best response to RMSE of reconstructed original image and processing time in comparison with others.

نویسندگان

Fatemeh Kowkabi

EE Department, Faculty member of Marvdasht Islamic Azad University, Marvdasht, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • دانشگاه آزاد اسلامی واحد مرودشت- مهر ماه 1393 ...
  • M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, ...
  • D. Heinz and C.-I Chang, Sully constrained least squares ...
  • J. C. Harsanyi and C.-I Chang, =Hyperspectral image ...
  • _ ultidimentiont remotely sensed images using two-class classifiers" 8th machine ...
  • نمایش کامل مراجع