Combining Data Mining and Group Decision Makingin Retailer Segmentation Based on LRFMP Variables
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 925
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-25-3_002
تاریخ نمایه سازی: 12 آبان 1393
چکیده مقاله:
Data mining is a powerful tool for firms to extract knowledge fromtheir customers’ transaction data. One of the useful applications ofdata mining is segmentation. Segmentation is an effective tool formanagers to make right marketing strategies for right customersegments. In this study we have segmented retailers of a hygienicmanufacture. Nowadays all manufactures do understand that forstaying in the competitive market, they should set up an effectiverelationship with their retailers. We have proposed a LRFMP(relationship Length, Recency, Frequency, Monetary, and Potential)model for retailer segmentation. Ten retailer clusters have beenobtained by applying K-means algorithm with K-optimum accordingDavies-Bouldin index on LRFMP variables. We have analyzedobtained clusters by weighted sum of LRFMP values, which theweight of each variable calculated by Analytic Hierarchy Process(AHP) technique. In addition we have analyzed each cluster in orderto formulate segment-specific marketing actions for retailers. Theresults of this research can help marketing managers to gain deepinsights about retailers.
کلیدواژه ها:
Market segmentation ، Customer Lifetime Value (CLV) ، LRFMP model ، Analytic Hierarchy Process (AHP) ، Clustering ، Cluster analysis
نویسندگان
a Parvaneh
Department of Industrial Engineering, K. N. Toosi University of Tech, Tehran, Iran
m.j Tarokh
Department of Industrial Engineering, K. N. Toosi University of Tech, Tehran, Iran.
h Abbasimehr
Department of Industrial Engineering, K. N. Toosi University of Tech, Tehran, Iran