Reservoir Inflow Prediction Using Hybrid Data Assimilation and Support Vector Machine Model

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,398

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCCE08_0204

تاریخ نمایه سازی: 5 مهر 1393

چکیده مقاله:

Accurate and reliable reservoir inflow forecast is crucial for real-time reservoir operation and management. Developing a simulation model to forecast future states of a system generally follows with errors in prediction. Frequently, data-based models such as Support Vector Machines (SVM) are used as simulation and forecasting techniques in hydrologicalmodeling. This paper introduces a hybrid model which couples the machine learning technique of Support VectorRegression for prediction (SVR) and Ensemble Kalman Filter (EnKF) as data assimilation procedure in order to improvethe performance and accuracy of inflow to reservoir. Inflow quantities to Zayandehroud reservoir is considered as state vector in assimilation process to develop better estimation for inflow. Evaluation criteria such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are implemented to evaluate the performance of SVR-EnKF model. As a result, the adjusted values of SVR-EnKF compared to SVR model indicate improved performance of proposed model

نویسندگان

M Mehrparvar

Ph.D. student, Department of Civil Engineering, Isfahan University of Technology

K. Asghari

Assistant Professor, Department of Civil Engineering, Isfahan University of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Vapnik, V. (1995), :The nature of statistical learning theory, " ...
  • Dibike, Y.B., Velickov, S., Solomatine, D.P. and Abbott, M.B. (2001), ...
  • Behzad, M., Asghari, K., Eazi, M. and Palhang, M. (2009) ...
  • Asefa, T., Kemblowski, M., Mckee, . and khalil, A. (2006) ...
  • Lin, J-Y., Cheng, C-T. and Chau, K-W. (2006), ;Using Support ...
  • Asefa, T., Kemblowski M.W., Urroz, G., Mckee, M. and khalil, ...
  • Kalman, R.E. (1960), ;:A new approach to linear filtering and ...
  • Refsgaard, J.C., Rosbjerg, D. and Markusse. L.M. (1 9 8 ...
  • Wood, E.F. and O'Connel, P.E. (_ 9 85), :Real-time forecasting, ...
  • Lee, Y. H. and Singh, V. P. (1999), :Tank model ...
  • I 1. Hartnack, J., and Madsen, H. (2001), "Data assimilation ...
  • Kashif Gill, M., Kemblowski, M. W. and McKee, M. (2007), ...
  • Liu, D., Yu, Z. B., and Lue, H. S. (2010), ...
  • DeChant, C. M. and Moradkhani, H. (201 1), :Improving the ...
  • Ricci, S., Piacentini, A., Thual, O., Pape, E. L. and ...
  • نمایش کامل مراجع