Sentiment Analysis of Public Opinion on the Internet of Things (IoT) Through Social Media

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-9-1_006

تاریخ نمایه سازی: 30 بهمن 1404

چکیده مقاله:

Social media offers a timely lens into public perceptions of emerging technologies. To assess public opinion on the Internet of Things (IoT), we analyzed a corpus of ۸۲۴,۸۴۵ IoT-related posts collected from X between ۲۰۱۳ and ۲۰۲۲. Using Latent Dirichlet Allocation (LDA), we identified seven primary themes of discussion: Smart Home, Business Intelligence, Artificial Intelligence, Smart City, IoT Usage, Emerging Technologies, and Blockchain. We then applied an unsupervised machine-learning technique to evaluate sentiment toward each theme. Overall, public discourse was positive: ۴۶.۷۸% of tweets expressed positive sentiment, ۴۳.۴۱% were neutral, and ۹.۸۱% were negative. Although predictable, short-term shifts in tone occurred around specific events, interest in these themes remained consistent throughout the study period. These findings suggest that the Internet of Things is generally perceived favorably and demonstrate how large-scale social media analytics can capture authentic, real-time attitudes toward complex technologies. By linking public opinion to specific topics of discussion, our results provide valuable insights for researchers, policymakers, and product teams seeking to align IoT development with societal expectations.

کلیدواژه ها:

نویسندگان

Elieh Khosravi Sangaria

Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran;

Ameneh Khadivar

Associate Professor, Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran;

Fatemeh Abbasi

Assistant Professor, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran;

Mahdieh Kabirian

Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran;

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • F. Abbasi, A. Khadivar and M. Yazdinejad, "A grouping hotel ...
  • A. L. Y. Tsang and D. K. Chiu, "Effectiveness of ...
  • S. J. Park, J. Y. Park, Y. S. Lim and ...
  • نمایش کامل مراجع