PROPOSING NEW REGRESSION MODELS FOR PREDICTION OF SOLAR RADIATION IN TEHRAN

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,494

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICESE01_135

تاریخ نمایه سازی: 18 خرداد 1393

چکیده مقاله:

Solar radiation is known as fundamental information for many different research subjects. Regarding the fact that measuring the exact amount of direct solar radiation is not applicable, the estimation models can provide acceptable results. In this research, solar radiation estimating methods are surveyed, and regression models are introduced as simple and effective methods. Therefore, a number of new regression models which use meteorological parameters as input data are proposed and the error of each model are calculated. Amount of solar radiation, solar hours, minimum temperature, maximum temperature and relative humidity which had measured from 2009 to 2011 in Aghdasieh - Tehran synoptic weather station are used in regression models. Results of this research indicate that using the amount of difference between maximum and minimum (ambient) temperature accompany by the number of day, propose minimum amount of mean square error as 3.9741. Evaluations show that applying all different parameters in regression models simultaneously, is the cause of estimation error augment.

کلیدواژه ها:

نویسندگان

Ahmad Razeghi

Department of Mechanical Engineering, Islamic Azad University Science & Research Branch, Tehran, Iran

Mohammad Hosein Daneshfar

Corporate Planning Department of Iranian Offshore Oil Company, Tehran, Iran

Saeed Akbarzadeh

Corporate Planning Department of Iranian Offshore Oil Company, Tehran, Iran

Masoud Moadel

Corporate Planning Department of Iranian Offshore Oil Company, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ghanbarzadeh, A.R. Noghrehabadi, (2010) "The potential of different artificial neurl ...
  • F.Jafarkazemi, M.Moadel, M.Khademi, A.Razeghi, (2013) "Performance Prediction of Flat-Plate Solar ...
  • A. Azadeh, A. Maghsoudi, S. Sohrabkhani, (2009) " An integrated ...
  • K. Bakirci, (2009) "Models of solar radiation with hours of ...
  • L.T Wong, W.K Chow, (2001) "Solar radiation model", Energy 69: ...
  • A. Mellit, (2008) "Artificial Intelligence technique for modelling and forecasting ...
  • Tamer Khatiba, Azah Mohameda, K. Sopian, (2012) "A review of ...
  • نمایش کامل مراجع